Плутоний. Описание плутония. Свойства плутония. Почему мы отказались от производства оружейного плутония? Реакторный плутоний

«Оружейным» его называют, чтобы отличить от «реакторного». Плутоний образуется в любом ядерном реакторе , работающем на природном или низкообогащённом уране, содержащем в основном изотоп 238 U , при захвате им избыточных нейтронов . Но по мере работы реактора оружейный изотоп плутония быстро выгорает, в итоге в реакторе накапливается большое количество изотопов 240 Pu, 241 Pu и 242 Pu, образующихся при последовательных захватах нескольких нейтронов - так как глубина выгорания обычно определяется экономическими факторами. Чем меньше глубина выгорания, тем меньше изотопов 240 Pu, 241 Pu и 242 Pu, будет содержать плутоний, выделенный из облучённого ядерного топлива, но тем меньшее количество плутония в топливе образуется.

Специальное производство плутония для оружия, содержащего почти исключительно 239 Pu, требуется, в основном, потому, что изотопы с массовыми числами 240 и 242 создают высокий нейтронный фон , затрудняющий конструирование эффективных ядерных боеприпасов, кроме того, 240 Pu и 241 Pu имеют существенно меньший период полураспада , чем 239 Pu, из-за чего плутониевые детали нагреваются, и в конструкцию ядерного боеприпаса приходится дополнительно вводить элементы теплоотвода. Дополнительно, продукты распада тяжёлых изотопов портят кристаллическую решётку металла, что может привести к изменению формы деталей из плутония, что чревато отказом ядерного взрывного устройства.

В принципе, все эти затруднения преодолимы, и были успешно испытаны ядерные взрывные устройства из «реакторного» плутония, однако, в боеприпасах, где не последнюю роль играет компактность, малый вес, надёжность и долговечность, применяется исключительно специально произведённый оружейный плутоний. Критическая масса металлических 240 Pu и 242 Pu весьма велика, 241 Pu - несколько больше, чем у 239 Pu.

Производство

Утилизация

С конца 1990-х США и Россия разрабатывали соглашения по утилизации избыточного оружейного плутония .

См. также

Напишите отзыв о статье "Оружейный плутоний"

Примечания

Ссылки

  • , Canadian Coalition for Nuclear Responsibility
  • , Amory B. Lovins , February 28, 1980, Nature , Vol. 283, No. 5750, pp. 817-823
  • Garwin Richard L. The Nuclear Fuel Cycle: Does Reprocessing Make Sense? // / B. van der Zwaan. - World Scientific, 1999. - P. 144. - ISBN 978-981-02-4011-0 .

Отрывок, характеризующий Оружейный плутоний

Болезнь его шла своим физическим порядком, но то, что Наташа называла: это сделалось с ним, случилось с ним два дня перед приездом княжны Марьи. Это была та последняя нравственная борьба между жизнью и смертью, в которой смерть одержала победу. Это было неожиданное сознание того, что он еще дорожил жизнью, представлявшейся ему в любви к Наташе, и последний, покоренный припадок ужаса перед неведомым.
Это было вечером. Он был, как обыкновенно после обеда, в легком лихорадочном состоянии, и мысли его были чрезвычайно ясны. Соня сидела у стола. Он задремал. Вдруг ощущение счастья охватило его.
«А, это она вошла!» – подумал он.
Действительно, на месте Сони сидела только что неслышными шагами вошедшая Наташа.
С тех пор как она стала ходить за ним, он всегда испытывал это физическое ощущение ее близости. Она сидела на кресле, боком к нему, заслоняя собой от него свет свечи, и вязала чулок. (Она выучилась вязать чулки с тех пор, как раз князь Андрей сказал ей, что никто так не умеет ходить за больными, как старые няни, которые вяжут чулки, и что в вязании чулка есть что то успокоительное.) Тонкие пальцы ее быстро перебирали изредка сталкивающиеся спицы, и задумчивый профиль ее опущенного лица был ясно виден ему. Она сделала движенье – клубок скатился с ее колен. Она вздрогнула, оглянулась на него и, заслоняя свечу рукой, осторожным, гибким и точным движением изогнулась, подняла клубок и села в прежнее положение.
Он смотрел на нее, не шевелясь, и видел, что ей нужно было после своего движения вздохнуть во всю грудь, но она не решалась этого сделать и осторожно переводила дыханье.
В Троицкой лавре они говорили о прошедшем, и он сказал ей, что, ежели бы он был жив, он бы благодарил вечно бога за свою рану, которая свела его опять с нею; но с тех пор они никогда не говорили о будущем.
«Могло или не могло это быть? – думал он теперь, глядя на нее и прислушиваясь к легкому стальному звуку спиц. – Неужели только затем так странно свела меня с нею судьба, чтобы мне умереть?.. Неужели мне открылась истина жизни только для того, чтобы я жил во лжи? Я люблю ее больше всего в мире. Но что же делать мне, ежели я люблю ее?» – сказал он, и он вдруг невольно застонал, по привычке, которую он приобрел во время своих страданий.
Услыхав этот звук, Наташа положила чулок, перегнулась ближе к нему и вдруг, заметив его светящиеся глаза, подошла к нему легким шагом и нагнулась.
– Вы не спите?
– Нет, я давно смотрю на вас; я почувствовал, когда вы вошли. Никто, как вы, но дает мне той мягкой тишины… того света. Мне так и хочется плакать от радости.
Наташа ближе придвинулась к нему. Лицо ее сияло восторженною радостью.
– Наташа, я слишком люблю вас. Больше всего на свете.
– А я? – Она отвернулась на мгновение. – Отчего же слишком? – сказала она.
– Отчего слишком?.. Ну, как вы думаете, как вы чувствуете по душе, по всей душе, буду я жив? Как вам кажется?
– Я уверена, я уверена! – почти вскрикнула Наташа, страстным движением взяв его за обе руки.
Он помолчал.
– Как бы хорошо! – И, взяв ее руку, он поцеловал ее.
Наташа была счастлива и взволнована; и тотчас же она вспомнила, что этого нельзя, что ему нужно спокойствие.
– Однако вы не спали, – сказала она, подавляя свою радость. – Постарайтесь заснуть… пожалуйста.
Он выпустил, пожав ее, ее руку, она перешла к свече и опять села в прежнее положение. Два раза она оглянулась на него, глаза его светились ей навстречу. Она задала себе урок на чулке и сказала себе, что до тех пор она не оглянется, пока не кончит его.
Действительно, скоро после этого он закрыл глаза и заснул. Он спал недолго и вдруг в холодном поту тревожно проснулся.
Засыпая, он думал все о том же, о чем он думал все ото время, – о жизни и смерти. И больше о смерти. Он чувствовал себя ближе к ней.
«Любовь? Что такое любовь? – думал он. – Любовь мешает смерти. Любовь есть жизнь. Все, все, что я понимаю, я понимаю только потому, что люблю. Все есть, все существует только потому, что я люблю. Все связано одною ею. Любовь есть бог, и умереть – значит мне, частице любви, вернуться к общему и вечному источнику». Мысли эти показались ему утешительны. Но это были только мысли. Чего то недоставало в них, что то было односторонне личное, умственное – не было очевидности. И было то же беспокойство и неясность. Он заснул.
Он видел во сне, что он лежит в той же комнате, в которой он лежал в действительности, но что он не ранен, а здоров. Много разных лиц, ничтожных, равнодушных, являются перед князем Андреем. Он говорит с ними, спорит о чем то ненужном. Они сбираются ехать куда то. Князь Андрей смутно припоминает, что все это ничтожно и что у него есть другие, важнейшие заботы, но продолжает говорить, удивляя их, какие то пустые, остроумные слова. Понемногу, незаметно все эти лица начинают исчезать, и все заменяется одним вопросом о затворенной двери. Он встает и идет к двери, чтобы задвинуть задвижку и запереть ее. Оттого, что он успеет или не успеет запереть ее, зависит все. Он идет, спешит, ноги его не двигаются, и он знает, что не успеет запереть дверь, но все таки болезненно напрягает все свои силы. И мучительный страх охватывает его. И этот страх есть страх смерти: за дверью стоит оно. Но в то же время как он бессильно неловко подползает к двери, это что то ужасное, с другой стороны уже, надавливая, ломится в нее. Что то не человеческое – смерть – ломится в дверь, и надо удержать ее. Он ухватывается за дверь, напрягает последние усилия – запереть уже нельзя – хоть удержать ее; но силы его слабы, неловки, и, надавливаемая ужасным, дверь отворяется и опять затворяется.
Еще раз оно надавило оттуда. Последние, сверхъестественные усилия тщетны, и обе половинки отворились беззвучно. Оно вошло, и оно есть смерть. И князь Андрей умер.
Но в то же мгновение, как он умер, князь Андрей вспомнил, что он спит, и в то же мгновение, как он умер, он, сделав над собою усилие, проснулся.
«Да, это была смерть. Я умер – я проснулся. Да, смерть – пробуждение!» – вдруг просветлело в его душе, и завеса, скрывавшая до сих пор неведомое, была приподнята перед его душевным взором. Он почувствовал как бы освобождение прежде связанной в нем силы и ту странную легкость, которая с тех пор не оставляла его.
Когда он, очнувшись в холодном поту, зашевелился на диване, Наташа подошла к нему и спросила, что с ним. Он не ответил ей и, не понимая ее, посмотрел на нее странным взглядом.
Это то было то, что случилось с ним за два дня до приезда княжны Марьи. С этого же дня, как говорил доктор, изнурительная лихорадка приняла дурной характер, но Наташа не интересовалась тем, что говорил доктор: она видела эти страшные, более для нее несомненные, нравственные признаки.
С этого дня началось для князя Андрея вместе с пробуждением от сна – пробуждение от жизни. И относительно продолжительности жизни оно не казалось ему более медленно, чем пробуждение от сна относительно продолжительности сновидения.

Описание плутония

Плутоний (Plutonium) представляет собой тяжелый химический элемент серебристого цвета, радиоактивный металл с атомным числом 94, который в периодической обозначается символом Pu.

Данный электроотрицательный активный химический элемент относится к группе актиноидов с атомной массой 244,0642, и, как и нептуний, который получил свое название в честь одноименной планеты, своим названием этот химический обязан планете Плутон, поскольку предшественниками радиоактивного элемента в периодической таблице химических элементов Менделеева является и нептуний, которые также были названы в честь далеких космических планет нашей Галактики.

Происхождение плутония

Элемент плутоний впервые был открыт в 1940 году в Калифорнийском Университете группой ученых-радиологов и научных исследователей Г. Сиборгом, Э. Макмилланом, Кеннеди, А. Уолхом при бомбардировании урановой мишени из циклотрона дейтронами — ядрами тяжелого водорода.

В декабре того же года учеными был открыт изотоп плутония – Pu-238, период полураспада которого составляет более 90 лет, при этом было установлено, что под воздействием сложнейших ядерных химических реакций изначально получается изотоп нептуний-238, после чего уже происходит образование изотопа плутония-238 .

В начале 1941 года ученые открыли плутоний 239 с периодом распада в 25 000 лет. Изотопы плутония могут иметь различное содержание нейтронов в ядре.

Чистое соединение элемента смогли получить только в конце 1942. Каждый раз, когда ученые-радиологи открывали новый изотоп, они всегда измеряли время периодов полураспада изотопов.

В настоящий момент изотопы плутония, которых всего насчитывается 15, отличаются по времени продолжительности периода полураспада . Именно с этим элементом связаны большие надежды, перспективы, но и в тот же момент, серьезные опасения человечества.

Плутоний имеет значительно большую активность, чем, к примеру, уран и принадлежит к самым дорогостоящим технически важным и значимым веществам химической природы.

К примеру, стоимость грамма плутония в несколько раз больше одного грама , , или других не менее ценных металлов.

Производство, добыча плутония считается затратной, а стоимость одного грамма металла в наше время уверенно держится на отметке в 4000 американских долларов.

Как получают плутоний? Производство плутония

Производство химического элемента происходит в атомных реакторах, внутри которых уран расщепляется под воздействием сложных химическо-технологических взаимосвязанных процессов.

Уран и плутоний являются главными, основными компонентами при производстве атомного (ядерного) горючего.

При необходимости получения большого количества радиоактивного элемента применяют метод облучения трансурановых элементов, которые можно получить из отработанного атомного топлива и облучения урана. Протекание сложных химических реакций позволяет отделить металл от урана.

Чтобы получить изотопы, а именно плутоний-238 и оружейный плутоний-239, которые представляют собой промежуточные продукты распада, используют облучение нептуния-237 нейтронами.

Ничтожно малую часть плутония-244, который является самым «долгоживущим» вариантом изотопа, по причине его длительного периода полураспада, обнаружили при исследованиях в цериевой руде, которая, скорее всего, сохранилась с момента формирования нашей Планеты Земля. В естественном виде в природе данный радиоактивный элемент не встречается.

Основные физические свойства и характеристики плутония

Плутоний — довольно тяжелый радиоактивный химический элемент серебристого цвета, который блестит только в очищенном виде. Атомная масса металла плутоний равна 244 а. е. м.

По причине своей высокой радиоактивности данный элемент теплый на ощупь, может разогреться до температуры, которая превышает температурный показатель при кипении воды.

Плутоний, под воздействием атомов кислорода быстро темнеет и покрывается радужной тонкой пленочкой изначально светло-желтого, а затем насыщенного — или бурого оттенка.

При сильном окислении происходит образование на поверхности элемента — порошка PuO2. Данный вид химического металла подвержен сильным процессам окисления и воздействия коррозии даже при незначительном уровне влажности.

Чтобы предотвратить коррозирование и оксидировании поверхности металла, необходима сушильная . Фото плутония можно посмотреть ниже.

Плутоний относится к четырехвалентным химическим металлам, хорошо и быстро растворяется в йодистоводородных веществах, кислых средах, к примеру, в , хлорной, .

Соли металла быстро нейтрализуются в средах с нейтральной реакцией, щелочных растворах, при этом образовывая нерастворимый гидрооксид плутония.

Температура, при которой происходит плавление плутония равна 641 градусам Цельсия, температура кипения – 3230 градусов.

Под воздействием высоких температурных режимов происходят неестественные изменения плотности металла. В виде плутоний обладает различными фазами, имеет шесть кристаллических структур.

При переходе между фазами происходят значительные изменения объемах элемента. Наиболее плотную форму элемент приобретает в шестой альфа-фазе (последняя стадия перехода), при этом тяжелее металла в этом состоянии бывает только , , нептуний, радий.

При расплавлении происходит сильное сжатие элемента, поэтому металл может держаться на поверхности воды и других неагрессивных жидких сред.

Несмотря на то, что данный радиоактивный элемент принадлежит к группе химических металлов, элемент довольно летуч, и при нахождении в закрытом пространстве за непродолжительный период времени увеличивается и возрастает в несколько раз его концентрация в воздухе.

К основным физическим свойствам металла можно отнести: невысокую степень, уровень теплопроводности из всех существующих и известных химических элементов, низкий уровень электропроводности, в жидком состоянии плутоний относится к одним из наиболее вязких металлов.

Стоит отметить, что любые соединения плутония относятся к токсичным, ядовитым и представляют серьезную опасность облучения для человеческого организма, которое происходит по причине активного альфа-излучения, поэтому все работы нужно выполнять предельно внимательно и только в специальных костюмах с химической защитой.

Больше о свойствах, теориях происхождения уникального металла можно прочитать в книге Обручева «Плутония ». Автор В.А. Обручев приглашает читателей окунуться в удивительный и уникальный мир фантастической страны Плутония, которая расположена в глубине недр Земли.

Применение плутония

Промышленный химический элемент принято классифицировать на оружейный и реакторный («энергетический») плутоний.

Так, для производства ядерного вооружения из всех существующих изотопов допустимо применять только плутоний 239, в котором не должно быть более 4.5% плутония 240, так как он подвержен самопроизвольному делению, что значительно затрудняет изготовление боевых снарядов.

Плутоний-238 находит применение для функционирования малогабаритных радиоизотопных источников электрической энергии, к примеру, в качестве источника энергии для космической техники.

Несколько десятилетий тому назад плутоний применяли в медицине в кардиостимуляторах (приборы для поддержания сердечного ритма).

Первая атомная бомба, созданная в мире, имела плутониевый заряд. Ядерный плутоний (Pu 239) востребован как ядерное топливо для обеспечения функционирования энергетических реакторов. Также этот изотоп служит источником для получения в реакторах трансплутониевых элементов.

Если провести сравнение ядерного плутония с чистым металлом, изотоп обладает более высокими металлическими параметрами, не имеет фаз перехода, поэтому его широко используют в процессе получения элементов топлива.

Оксиды изотопа Плутония 242 также востребованы как источник питания для космических летальных агрегатов, техники, в ТВЭЛах.

Оружейный плутоний – это элемент, который представлен в виде компактного металла, в котором содержится не меньше 93% изотопа Pu239.

Данный вид радиоактивного металла применяют про производстве различных видов ядерного оружения.

Получают оружейный плутоний в специализированных промышленных атомных реакторах, которые функционируют на природном или на низкообогащенном уране, в результате захвата им нейтронов.

На саммите по ядерной безопасности Дмитрий Медведев заявил о закрытии последнего в России реактора—наработчика оружейного плутония.

Комментирует военный обозреватель Сергей Птичкин:

Пятнадцатого апреля в «закрытом» городе Железногорск Красноярского края произошло действительно знаменательное событие: реактор был остановлен. В СССР плутоний для изготовления боеголовок производился в разное время в разных количествах на различных предприятиях атомной промышленности. Однако массовая его выработка началась на реакторах типа АД и АДЭ в Железногорске. Здесь, в гранитных горах, был построен уникальный подземный завод по производству многих компонентов ядерного оружия и космических аппаратов военного назначения. Общая длина туннелей, прорубленных в скалах, превышает двести километров. Подобных циклопических сооружений нет нигде в мире.

Плутоний - это отдельная и очень яркая страница в истории ядерно-оружейной гонки ХХ века. В чистом виде в природе он не существует. Впервые получили его в 1940 году в США, где уже шли работы по атомному проекту. Со временем выяснилось, что Pu-239 идеально подходит для создания компактного и очень мощного ядерного оружия, поэтому его и стали называть оружейным. Критическая масса у него значительно меньше, чем у основной ядерной взрывчатки U-235. Первоначально плутоний использовался в качестве основного детонатора простых атомных, а затем и сложных термоядерных боеголовок. С развитием высоких технологий Pu-239 начали использовать как «чистую» взрывчатку. Особенно в малокалиберных боеприпасах, где при минимальном объеме необходимо было получить максимальный взрывной эффект. Плутониевые заряды стали применяться в разделяющихся боеголовках стратегических ракет, в артиллерийских снарядах, торпедах и диверсионных минах.

Плутоний можно было бы считать идеальной начинкой для всех видов ядерных боеприпасов, если бы не ряд существенных особенностей этого вещества, получаемого, только искусственным образом. Само производство оружейного плутония очень сложно и дорогостояще. Поэтому изготавливать его в необходимых количествах могли себе позволить лишь США и СССР. Помимо технологической сложности, производство его крайне опасно и требует соблюдения поистине беспрецедентных мер защиты. Pu-239 является одним из самых химически ядовитых элементов.

Будучи химически чрезвычайно активным, Pu-239 нестабилен, он начинает очень быстро окисляться, вступать в реакции с окружающими его средами. Создатели атомных и водородных бомб сделали все возможное и, наверное, невозможное, чтобы исключить для Pu-239 даже малейшую возможность окисления и потери им боевых свойств, но за десятилетия случиться может всякое. Нельзя исключить, что плутоний, основа современного ядерного оружия, не сохраняет свою расчетную критическую массу на протяжении десятилетий хранения в арсеналах. Компьютерные расчеты показывают: с ядерным оружием и в США, и в России все в порядке. Но это виртуальное моделирование, а натурных ядерных испытаний не проводилось давно, и каково реальное состояние боеголовок, собранных в семидесятые-восьмидесятые годы ХХ века, сказать однозначно все-таки нельзя.

Самый мощный реактор по выработке оружейного плутония в Железногорске - АДЭ-2 - непрерывно проработал почти полвека. Помимо производства Pu-239 реактор вырабатывал тепло и электроэнергию для города атомщиков и ракетостроителей. С 1995-го в Железногорске перестали производить оружейный плутоний, хотя этот факт никогда особо не афишировался. АДЭ-2 уже пятнадцать лет работал как обычная АЭС - производил тепло и электроэнергию. 15 апреля и мирная работа реактора была прекращена полностью. Ранее из гигантского подземного предприятия вывели все космическое производство.

Теперь России, в соответствие с международными договоренностями, предстоит начать процесс уничтожения накопленного оружейного плутония. США уже пообещали выделить нашей стране для этих целей 400 миллионов долларов. К настоящему времени в мире, если судить по открытым источникам, произведено около 300 тонн оружейного плутония. Этого количества достаточно для гарантированного и многократного уничтожения жизни на Земле. Так что дальнейшее производство Pu-239 совершенно бессмысленно. Если, конечно, считать, что создатели ядерного оружия нашли способ обеспечения стабильности оружейного плутония бесконечно долго.

Вопрос, который остается в стороне от оружейных тем - что будет с гигантским подземным промышленным комплексом? В создание его были вложены миллиарды «золотых рублей», и распорядиться дальнейшей судьбой уникального и очень дорогого подземного сооружения, надо все-таки по-государственному.

Специально для Столетия

Композиция изотопов плутония, накапливающегося в реакторе в результате реакций, происходящих в урановом топливе, зависит от степени выгорания топлива. Из 5 основных образовавшихся изотопов 2 с нечетными массовыми номерами – 239 Pu и 241 Pu являются ращепляющимися, т.е. способными к ращеплению под действием тепловых нейтронов, и в ринципе могут быть использованы в качестве реакторного топлива. Поэтому, если речь идет о возможности использования плутония в качестве реакторного топлива, значение имеет количестио накоплен-ного 239Pu и 241Pu. Для ядерного же оружия необходим практически чистый 239Pu т.к. излучатели нейтронов 240Pu и 238Pu могут спонтанно вызвать “пред-начальное воспламенение”, а это приведет к существенно меньшей силе взрыва атомной бомбы. Поэтому разница в “качестве” плутония обычно определяется его изотопным составом.

239 Pu накапливаеться в обычном энергетическом реакторе на урановом топливе в результате нейтронного захвата изотопом 238 U.Одновременно с этим происходит основная реакция деления изотопа 235 U сопровождающаяся выдел поэтому для того, чтобы его можно было использовать в качестве топлива в легководных реакторвах, естественный уран обогащают, доводя содержание 235 U до 3-4%. После одного года работы типичного ЛВР мощностью 1000 МВт образуется около 200 кг плутония из которых около 150 кг составляет 239 Pu.

Таблица 2 - Виды плутония.

Таким образом, при работе атомного уранового реактора в его топливных стержнях накапливаются различные изотопы плутония.

Плутоний, производимый в топливных элементах обычных промышленных атомных реакторов, подвергшихся экспозиции 33000 МВт*сут/т уранового топлива, имеет приблизительно следующий изотопный состав:

Таблица 3 - Изотопный состав реакторного плутония (степень выгорания 30-40 МВт*сут/кг).

Лишь два из пяти изотопов плутония, 239 Pu и 241 Pu, являются расщепляющимися (делящимися), т.е. способными к расщеплению в результате захвата тепловых (медленных) нейтронов, и в принципе пригодны для использования в качестве реакторного топлива. Поэтому, если речь идет о возможности использования плутония в качестве реакторного топлива, важно знать только количество 239 Pu и 241 Pu, обозначаемое Puf от слов Pu (плутоний) и fissile (делящийся). Полное же количество всех изотопов плутония обозначается Put от слова total (полный, общий, итоговый).

Для ядерного же оружия желательно иметь практически чистый 239 Pu, поскольку изотопы 240 Pu и 238 Pu самопроизвольно испускают нейтроны, которые могут вызвать т. н. «предначальное воспламенение», а это приведет к существенно меньшей силе взрыва атомной бомбы. Поэтому принято классифицировать плутоний по "качеству" в соответствии с его изотопным составом.

Хотя предначальное воспламенение уменьшает мощность взрыва ядерного взрывного устройства, изготовленного из реакторного плутония, можно утверждать, что мощность взрыва сравнительно простого взрывного устройства из реакторного плутония, подобного бомбе, взорванной в Нагасаки, будет равно примерно одной или нескольким килотоннам, даже если предначальное воспламенение произойдет в наименее благоприятный момент. В Японии и некоторых европейских странах сторонники плутония продолжают утверждать, что из-за предначального воспламенения реакторный плутоний практически не может быть использован в ядерном оружии, и что поэтому плутониевые программы в этих странах, основанные на выделении и использовании реакторного плутония, следует рассматривать исключительно как «мирные». Однако это мнение противоречит фактам, признанным международной научной общественностью. В докладе американской Национальной Академии наук, выпущенном в 1994 году и посвященном утилизации ядерных оружейных материалов, утверждается, что «плутоний практически любого изотопного состава может быть использован в ядерном оружии».

В некоторых европейских странах апологеты плутония продолжают утверждать, что реакторный плутоний практически не может быть использован в ядер-ном оружии и на этом основании плутониевые программы в таких странах, основанные на выделении и использовании реакторного плутония, предлагается рассматривать, исключетельно, как “мирные”. Утверждение о “мирном” характере реакторного плутония, однако, противоречит фактам, признанным международной научной общественностью. В докладе американской Национальной Академии Наук, выпущенном в 1991 году и посвященном диспозиции ядерных оружейных материалов, утверждается, что “плутоний с практически любым изотопным составом может быть использован в ядерном оружии”. Можно привести и другие научные и технические аргументы в пользу того, что реакторный плутоний является подходящим материалом для ядерного оружия.

МОКС-топливо

Поскольку и реакторный плутоний, и плутоний более высоких сортов является смесью делящихся изотопов, он в принципе пригоден для использования в качестве реакторного топлива. Обычно плутоний используется в этом качестве в виде смеси диоксида плутония PuO 2 с диоксидом урана UO 2 . Эта смесь оксидов (PuO 2 +UO 2), называемая МОКС-топливом, обычно используется в двух типах реакторов - в реакторах на быстрых нейтронах (БН) и в легководных реакторах (ЛВР).

Реактор на БН может вырабатывать плутоний в результате захвата нейтронов ядрами 238 U, находящегося в активной зоне реактора и в окружающем ее бланкете, в то время как плутоний (МОКС-топливо с 20-30% плутония) "горит" в активной зоне. Такой реактор называют размножителем или бридером, поскольку он вырабатывает больше плутония, чем потребляет. Смысл бридера в том, что он повышает эффективность использования ресурсов урана в целых 60 раз, и он позволяет преобразовать ранее остававшийся без применения 238 U в плутоний и одновременно вырабатывать полезную мощность. Из-за этих заманчивых перспектив реактор на БН стал с самого начала развития атомной промышленности ее "голубой мечтой", почти «вечным двигателем».

Но, увы - реальность оказалась больше похожа на кошмар, чем на прекрасный сон. Чтобы размножение было возможным, реакция деления в реакторе на БН поддерживается быстрыми (высокоэнергетическими) нейтронами, в отличие от ЛВР, которые работают на тепловых нейтронах. Поскольку нет возможности использовать замедляющий охладитель, приходится охлаждать активную зону реактора на БН расплавом щелочного металла, который имеет высокую химическую активность и реагирует со взрывом с воздухом и водой.

Отметим далее, что размножение плутония происходит не так быстро, как хотелось бы: время удвоения, то есть время, за которое один бридер создает достаточно плутония для загрузки другого такого же реактора (40 лет), значительно превышает время жизни первого реактора (не более 30 лет). Это указывает на другую ключевую проблему бридера: в конечном итоге для его эксплуатации должна быть создана система, включающая множество этапов, в том числе выделение плутония, загрузка топлива в реакторы, переработка отработавшего топлива и бланкета.

Эти и другие технические трудности бридеров стали причиной неэкономичности их использования, и оба эти недостатка - технические сложности и высокие стоимостные показатели - привели к тому, что США и все западноевропейские страны свернули свои бридерные программы.

Применение МОКС в качестве ядерного топлива: проблемы безопасности

С окончанием периода «холодной войны» угроза начала мировой войны с применением ядерного оружия уменьшилась почти до нуля. Ее место заняла опасность распространения ядерного оружия и применения его ранее не обладавшими им государствами или группами, что может произойти в случае, если в их руки попадет высокообогащенный уран или плутоний.

В настоящее время основная угроза безопасности в связи с ядерным оружием возникает из-за распространения его на страны, ранее им не обладавшие. Пока лишь семь государств обладают ядерным оружием. Это Китай, Франция, Россия, США, Великобритания, Индия и Пакистан.

На данный момент США располагают 9500 ядерных боеголовок, Россия - примерно 10500. Если разрабатываемые в настоящее время соглашения о сокращении вооружений вступят в силу, Россия и США уменьшат свои ядерные арсеналы до примерно 5000 с каждой стороны к 2003 году. Но даже после столь значительного сокращения эти две страны будут обладать весьма внушительными запасами ядерного оружия.

Великобритания располагает 400 ядерных боеголовок; Франция примерно 500; Китай, вероятно, около 400; Индия около 40; Пакистан примерно 7. Можно также предполагать, что Иран, Израиль и Северная Корея стремятся к созданию ядерного оружия.

Тем не менее, маловероятно, что какой-либо стране удастся войти в клуб ядерный держав в течение ближайших 10-15 лет. В течение этого периода произойдет широкое распространение атомных технологий, ориентированных на мирное применение (но которые можно использовать для развития военных программ). Одновременно будет происходить распространение технологии создания баллистических ракет. Опасное сочетание! Когда это произойдет (а можно опасаться, что это случится примерно через 10-15 лет), распространение ядерного оружия может пойти быстрыми темпами.

Сейчас значительное внимание уделяется деятельности ядерных держав по модернизации их ядерных вооружений («вертикальная гонка вооружений»). Однако не следует недооценивать опасности, которые таит в себе попадание ядерного оружия в распоряжение государств, ранее его не имевших («горизонтальная гонка вооружений»), поскольку это создает угрозу применения ядерного оружия в будущих локальных конфликтах.

Обретение какой-либо державой статуса ядерной будет дестабилизировать обстановку в соответствующем регионе. Более того, одна лишь возможность такого обретения наносит ущерб безопасности, заставляя страны-соседи напрягать силы, чтобы не отстать от лидера. Например, если Япония начнет работать над созданием ядерного оружия, Северная и Южная Кореи будут склонны сделать то же, а Китай, вероятно, займется наращиванием ядерных арсеналов.

Кажется маловероятным, что правительства будут принимать политические решения о создании ядерного оружия в ближайшее время, зато риск попадания ядерного оружия в руки террористов все возрастает. Эта опасность уже стала более актуальной, чем угроза мировой ядерной войны, по крайней мере, в ближайшей и среднесрочной перспективе.

Террористы неизменно стремятся к нанесению возможно большего ущерба. От ставших привычными попыток взрыва самолетов они переходят к более серьезным действиям, таким как атака с использованием нервно-паралитического газа в Токио. Этот пример показывает, что лидеры террористических группировок не останавливаются перед применением современного оружия массового уничтожения - в данном случае химического. Ядерное оружие может стать следующим в этой цепи.

Использование МОКС в качестве топлива для ядерных реакторов с последующим выделением плутония из отработанных топливных элементов резко увеличивает опасность попадания делящихся материалов, пригодных для изготовления ядерного оружия, в руки агрессивно настроенных государств и террористов. В простейшей атомной бомбе вся энергия взрыва возникает за счет реакции деления ядер.

Ниже описано устройство плутониевой атомной бомбы имплозионного типа. Те, кому удастся ее изготовить, могут быть уверены в том, что она сработает - им не потребуется проводить испытаний, так что изготовление и последующее размещение взрывного устройства можно будет осуществить в тайне.